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A B S T R A C T   

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease without effective medications or supplemental 
treatments. Thus, predicting AD progression is crucial for clinical practice and medical research. Due to limited 
neuroimaging data, two-dimensional convolutional neural networks (2D CNNs) have been commonly adopted to 
differentiate among cognitively normal subjects (CN), people with mild cognitive impairment (MCI), and AD 
patients. Therefore, this paper proposes an ensemble learning (EL) architecture based on 2D CNNs, using a multi- 
model and multi-slice ensemble. First, the top 11 coronal slices of grey matter density maps for AD versus CN 
classifications were selected. Second, the discriminator of a generative adversarial network, VGG16, and 
ResNet50 were trained with the selected slices, and the majority voting scheme was used to merge the multi-slice 
decisions of each model. Afterwards, those three classifiers were used to construct an ensemble model. Multi-slice 
ensemble learning was designed to obtain spatial features, while multi-model integration reduced the prediction 
error rate. Finally, transfer learning was used in domain adaptation to refine those CNNs, moving them from 
working solely with AD versus CN classifications to being applicable to other tasks. This ensemble approach 
achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and 
MCI versus CN, respectively. Compared with other state-of-the-art 2D studies, the proposed approach provides an 
effective, accurate, automatic diagnosis along the AD continuum. This technique may enhance AD diagnostics 
when the sample size is limited.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive, neurodegenerative form of 
dementia [1]. Globally, there are around 44 million people who have 
been diagnosed with AD, and this number is projected to grow to 131.5 
million by 2050 [2]. Thus, AD has become a major public health prob-
lem worldwide. The main clinical manifestations of AD are memory 
decline, progressive cognitive dysfunction, and impaired daily living 
abilities [3]. While the pathogenesis and etiology of AD remain unclear, 
considerable pathological evidence indicates the central features of AD, 
including the deposition of the β-amyloid (Aβ) peptide in plaques, the 
hyperphosphorylation of the Tau protein, and the development of 
neurofibrillary tangles [4,5]. Mild cognitive impairment (MCI) 

represents a transitional phase between healthy cognitive aging and AD. 
The annual conversion rate from MCI to probable AD is about 10%–12% 
[6]. Neuroimaging plays an important role in determining the diagnostic 
and prognostic biomarkers of AD. Structural magnetic resonance im-
aging (sMRI) has been widely used to classify patients with AD at 
different disease stages [7]. 

With the development of machine learning, especially deep learning, 
many computational models have been proposed for the computer-aided 
classification of AD patients. Convolutional neural networks (CNNs) 
have recently emerged as a powerful deep learning architecture [8,9]. 
Convolutional neural networks (CNNs) have recently emerged as a 
powerful deep learning architecture [10]. Compared with other ma-
chine learning approaches, CNNs are superior at discerning subtle and 
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diffuse anatomical abnormalities in brain imaging. CNN models in 
neuroimaging studies can be classified into region of interest (ROI)-level 
[11], two-dimensional (2D) slice-level [12–16], three-dimensional (3D) 
patch-level [17–19], and 3D subject-level [20–24]. Shmulev et al. [21] 
have proposed a 3D ResNet to classify MCI subjects into either MCI 
converters (MCIc) or MCI non-converters (MCInc), and their method has 
returned an accuracy value of 62%. Another work from Valliani et al. 
[15] have classified AD versus CN through a slice-level system in which 
ResNet18 was pretrained on the ImageNet [25] database, obtaining a 
classification accuracy of 81.3%. Aderghal et al. [16] have proposed a 
LeNet-like CNN. They collected MRI and diffusion tensor imaging data 
from the hippocampal regions on three anatomical planes (axial, 
sagittal, and coronal) at the slice level and used these data as input. The 
network was pretrained on the MNIST database, and it obtained a 
classification accuracy of 86.83% for AD versus CN, 71.75% for AD 
versus MCI, and 69.85% for MCI versus CN. Notably, training a 3D CNN 
from scratch requires large amounts of MRI data, and dataset limitations 
are the main cause of overfitting. To eliminate the requirement for a 
huge amount of imaging data, researchers have adopted transfer 
learning techniques that use pretrained 2D CNNs [18,22,26]. 

However, 3D spatial contextual information, which is required to 
achieve accurate classifications, cannot be captured by existing 2D 
CNNs. Ensemble learning (EL) effectively improves classification accu-
racy and stability by integrating multiple MRI slices or multiple CNNs 
[12,16,27]. Therefore, the present paper proposes a novel EL CNN sys-
tem that integrates 11 of the best validation accuracy 2D slice-level 
models from three CNNs for final classification. In comparison with 
the CNN classification model based on a single slice, the integration of 
multiple 2D slices could exploit more effective information contained in 
3D MRI data. 

The remainder of the paper is organized as follows. Section 2 in-
troduces the preprocessing procedures and proposes an EL method 
based on deep convolution generative adversarial networks (DCGAN) 
[28] and other CNN models. Section 3 presents the experimental settings 
and experimental results of this research. Section 4 discusses the overall 
results and possibilities for future work, and Section 5 concludes the 
study. 

2. Materials and methods 

2.1. Dataset 

Data used in the preparation of this article were obtained from the 
ADNI. The ADNI was launched in 2003 as a public-private partnership, 
led by Principal Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether MRI, positron emission tomography, 
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of MCI and AD. 

The experiment included 1.5T T1-weighted baseline sMRI scans from 
798 participants in the ADNI-1 cohort. These subjects were divided into 
three groups (AD, MCI, and CN) according to their baseline diagnoses. 
Table 1 summarizes the participants’ demographic characteristics, 
including age, gender, years of education, and Mini-Mental State Ex-
amination scores (MMSE) [29]. These subjects were divided into three 

groups (AD, MCI and CN) by baseline diagnosis. Table 1 summarizes the 
demographic characteristics of the participants, including age, gender, 
years of education and mini-mental state examination scores (MMSE). 
MCI subjects were further divided into two subgroups: MCIc and MCInc, 
according to 24 months MCI to probable AD conversion status. Some 
MCI participants were excluded from further analysis due to incomplete 
follow-up conversion status, or reversion status. Thus, of the 382 MCI 
subjects, 138 MCIc and 181 MCInc participants remained in the study of 
the prediction of MCI convert to AD. The sMRI scans were randomly split 
into training, validation, and test sets at a ratio of 7:1:2. 

2.2. Image pre-processing 

The MRI scans were first converted from the Digital Imaging and 
Communications in Medicine (DICOM) format to the Neuroimaging 
Informatics Technology Initiative (NIfTI) format, using dcm2niigui 
incorporated in MRIcron software. All subjects were processed and 
analyzed using the CAT12 toolbox (http://www.neuro.uni-jena. 
de/cat/) via SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/sof 
tware/spm). 3D T1-weighted MRI scans were normalized using an 
affine transformation, followed by non-linear registration, corrected for 
bias field in homogeneities. Then, the normalized images were 
segmented into grey matter (GM), white matter, and cerebrospinal fluid 
and were modulated and normalized into a Montreal Neurological 
Institute (MNI) template. Before being used for further analysis, the 
extracted GM density maps (GMDM) were smoothed with a 2.0 mm full 
width at half maximum (FWHM) Gaussian isotropic kernel. Thus, the 
preprocessed GMDM had a size of 121 × 145 × 121 voxels and a spatial 
resolution of 1.5 × 1.5 × 1.5 mm3. 

2.3. 2D slice selection 

Slice selection is a critical component of applying 2D CNNs to 3D 
volumes. Therefore, the 3D volumetric data was sectioned along the 
coronal direction, and the slices were sampled at 3.0 mm intervals to 
ensure the diversity of the features. All these slices were used as input 
images for VGG16, which had been pretrained with the ImageNet 
dataset. The first four VGG convolution blocks were frozen, while the 
last convolution block and the dense layers were fine-tuned. Images 
from the coronal plane were numbered from 1 to 145 and mapped into 
the standard MNI space from − 126 to 90. The 2D slices were resized to 
128 × 128 pixels by cropping and padding. The top 11 2D slices with the 
highest classification accuracy were selected. 

2.4. DCGAN based EL 

The concept of generative adversarial networks (GAN) [30] involves 
training a generator and a discriminator in an adversarial way. Deep 
convolutional generative adversarial networks (DCGAN) is an upgraded 
version of the GAN architecture, combining CNN and GAN. In these 
networks, the generator is composed of a series of transposed convolu-
tional operations. This model assumes a uniform distribution noise 
vector and generates images. The discriminator is basically a convolu-
tional classifier made up of convolutional layers, max-pooling layers, 
batch normalization layers, and LeakyReLU activations. Considering the 
scarcity of neuroimaging data, DCGANs and domain transfer learning 
are applied to pretrain classification models. 

Fig. 1 shows the flowchart of the DCGAN-based method. All 2D slices 
were used to train the model. Then, the network parameters learned in 
the DCGAN discriminator were transferred to classify AD versus CN. 
Majority voting EL was used to combine predictions from multiple 
selected slices. 

2.5. Multi-model EL 

Fig. 2 illustrates the workflow of this algorithm, which contained two 

Table 1 
Demographic information of the subjects in ADNI-1.  

Characteristic AD MCI CN 

Subjects 187 382 229 
Age 75.26 ± 7.53 74.71 ± 7.48 75.87 ± 5.02 
Gender (Male/Female) 98/89 245/137 119/110 
Education 14.66 ± 3.14 15.67 ± 2.90 16.07 ± 2.85 
MMSE 23.28 ± 2.04 27.33 ± 1.83 29.11 ± 1.00 

The age, education years, and MMSE values are reported as Mean ± Standard 
deviation (Std). 
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stages. The first stage involved multi-slice EL. The discriminators, 
VGG16, and ResNet50 were trained with 11 top-ranked slices from the 
training set. VGG16 and ResNet50 had also been pretrained with the 
ImageNet dataset, and transfer learning was applied for classifying AD 

versus CN. The last two convolution blocks of the classic CNNs were fine- 
tuned, and the remainder of the convolution blocks were frozen. A 
majority voting ensemble was used to combine predictions from 
different slices in each classifier. For the second stage, majority voting 

Fig. 1. Flowchart of the DCGAN-based method in AD versus CN classification.  

Fig. 2. Flowchart of our proposed EL method.  
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was applied to three classifiers to achieve the final classification. 

2.6. Transfer learning to different tasks 

Compared to AD versus CN classification, several other classification 
tasks (AD versus MCI, MCI versus CN, and MCIc versus MCInc) are more 
challenging, because structural changes in MCI are relatively subtle. 
However, the supplementary knowledge learned from AD versus CN 
classification can be adopted to enrich the information available when 
attempting more difficult tasks. For such tasks, this research considered 
the last two convolutional blocks of each classifier for fine-tuning. 

3. Experiments and results 

3.1. Model training 

All models in this work were deployed in Python 3.7.9 and Tensor-
flow 2.4 packages on a workstation with Intel Xeon W-2223 CPU with 
16 GB of RAM, and a NVIDIA GeForce RTX 3090 GPU 24 GB. 

In the DCGAN model, all losses were computed with binary cross 
entropy. In the training phase, the Adam optimizer was used, with initial 
learning rates of 2 × 10− 3 and 2 × 10− 4 for the generator and 
discriminator, respectively. As training epochs increased, the losses from 
both the discriminator and the generator were converged to certain 
constant numbers, and the discriminator’s accuracy approached 50%, 
indicating that the DCGAN had finally reached Nash equilibrium 
(Fig. 3). 

VGG16, ResNet50, and the DCGAN discriminator were used as 2D 
slice classifiers. To train those CNNs, the Adam [29] optimization al-
gorithm was chosen to iteratively tune the weights. The initial learning 
rate of the discriminator classifier was set to 1 × 10− 3, and the initial 
learning rates of VGG16 and ResNet50 were 1 × 10− 4. An early stopping 
method was implemented, in which the classifier stopped training when 
the loss function did not improve over 30 epochs with the validation 
dataset. Uninformative slice classifiers, with an accuracy of less than 
60%, were removed from the majority voting process. 

3.2. Classification results 

Fig. 4 shows the selected slice numbers, the corresponding MNI space 
coordinates from the Bioimage Suite Web(https://bioimagesuiteweb.gi 
thub.io/webapp/mni2tal.html) and the corresponding T1 images in 
MNI space. 

To evaluate the diagnostic performance of those classifiers, four 
widely used performance metrics were applied: accuracy, sensitivity, 
specificity, and the area under the receiver operating characteristic 
curve (AUC). The numbers representing each of these metrics were 
defined as true positive (TP), true negative (TN), false positive (FP), or 
false negative (FN), and the first three metrics were calculated as fol-
lows: Accuracy = TP+TN

TP+TN+FN+FP, Sensitivity = TP
TP+FN, and Specificity =

TN
TN+FP. AUC is calculated based on the area under the receiver operating 

characteristic curve. Table 2 shows the multi-slice EL’s classification 
results for the AD versus CN task. The classification accuracy of the 
discriminator classifier was 4.16% and 7.28% higher than the maximum 
and average accuracies of single-slice classification, respectively. The 
discriminator classifier also performed better than classic CNN models. 
Table 3 presents the experimental results obtained via the three EL 
models across four binary classification tasks (AD versus CN, AD versus 
MCI, MCI versus CN, and MCIc versus MCInc). 

We have observed 90.36% accuracy in classifying AD versus CN. The 
sensitivity and specificity for this task are 93.94% and 83.78%, respec-
tively. The AUC is noted to be 89.72%. The classification accuracy of AD 
versus MCI is 77.19%, the AUC for this ensemble model is derived as 
71.18%. Classifying the MCI scans from CN scans has an accuracy of 
72.36%, with sensitivity and specificity of 74.71% and 84.42%, 
respectively. Ensemble model yields the accuracy of 63.49% for MCIc 
versus MCInc classification. 

4. Discussion 

For slice-level AD versus CN classification, CNNs pretrained using the 
ImageNet dataset were fine-tuned with GMDM. The discriminator was 
transferred from classifying fake from real to classifying AD versus CN. 
Table 4 lists the classification accuracies of the slides selected for AD 
versus CN classification, further illustrating the accuracy and stability of 
the single-slice classifier. The top slice covered the following regions: 
Hippocampus, ParaHippocampal, Temporal_Inf, Temporal_Mid, and 
Thalamus (all coordinating with the Automated Anatomical Labeling 
[AAL] template within the MNI space, Y = − 22). The discriminator 
achieved the highest accuracy among these classifiers, with an average 
accuracy of 84.23%. It also had the best stability among the three single 
classifiers, while ResNet50 had the lowest stability. Improvements in 
transfer learning, obtained with better models, and pretraining datasets 
with greater domain matches are complementary. Considering that the 
slice selection was based on VGG16, and since the selected slices 
matched VGG16 well, VGG16 outperformed ResNet50. The similarities 
between the features of the source and target domains were highest in 
the discriminator, possibly because it achieved the best performance 
during transfer learning. This research hypothesizes that features from 
different slices are complementary. Integrating multi-slice results 
would, therefore, outperform a single-slice result. The classification re-
sults from 11 slices were integrated to obtain a subject-level classifica-
tion. For AD versus CN classification, the multi-slice EL values for the 
discriminator, VGG16, and ResNet50 were, respectively, 7.28%, 5.24%, 
and 11.13% higher than the average classification accuracy of a single- 
slice classifier. Thus, multi-slice EL considerably improved the classifi-
cation performance of 2D CNN models. 

Table 5 shows the classification performance of three CNN models 
across four tasks. For classifying AD versus CN and predicting MCI 
conversion to AD, the discriminator classifier achieved the best perfor-
mance. For classifying AD versus MCI and MCI versus CN, VGG16 per-
formed best. In most tasks, the multi-model EL method, combining 
multiple classifiers, was more accurate than a single learner alone, 

Fig. 3. Training result of DCGAN. d_loss is the loss of discriminator, g_loss is the loss of generator, and d_acc is the output of discriminator.  
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indicating that these classifiers had appropriately learned the different, 
yet complementary, information. For example, in MCI versus CN clas-
sification, the multi-model method improved the classifications by 
3.49%. However, when predicting MCI conversion to AD, the multi- 
model EL method performed relatively poorly as compared to the 

discriminator, mainly because the pathological changes between MCIc 
and MCInc are subtle [31], especially in 2D imagery. Limited neuro-
imaging data and slighter pathological changes between MCIc and 
MCInc decrease the effectiveness of transfer learning in extracting 
AD-related pathological features directly from MCI data. This issue can 
be mitigated by increasing the number of classifiers and changing the 
data distribution. To accomplish that in this research, three classifiers 
were trained with training samples of equal weights. Then, the weights 
of the training samples were updated based on the learning error rate. 
Hence, subjects with high learning error rates in the subsequent classi-
fier became the focus. This operation was repeated until Classifier-1, 
Classifier-2, and Classifier-n were obtained. When the number of clas-
sifiers increased by n times, weak classifiers could be combined to 
generate a robust classifier. 

To determine how multi-slice EL and multi-model EL contribute to 
classification performance, an ablation study was conducted (Table 6). A 
pre-trained VGG16 was employed, using the best slice as the Baseline 
Model. The best slice was also used in Model 1. Three EL models were 
adopted for the proposed model and Model 1. The discriminator, which 
was pre-trained in GAN, was applied in Model 2. For AD versus CN 
classification, most performance gains were achieved from the multi- 
slice strategy. For MCI-related classification, multi-model and multi- 
slice strategies provided basically the same contributions. 

The accuracy of MCI conversion predictions was further analyzed. 
Table 7 shows the various classifiers’ accuracy when predicting MCI 
conversion to AD, including different conversion times. The results show 
that classification accuracy decreases as conversion time increases, and 
the discriminator made more accurate predictions for patients who 
converted from MCI to AD in 18 months. In this study, the period for 
predicting MCI to AD conversion was set to two years. However, no clear 
criterion prescribes the exact length of time. According to different 
scientific research objectives, including a study from the ADNI [32], this 
time has been said to range from 18 to 36 months. However, regardless 
of the length of the period, some advantages and disadvantages can be 

Fig. 4. Location of the selected coronal slices.  

Table 2 
Classification result of three classifiers for AD versus CN classification.  

Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

Discriminator 90.36 91.43 86.49 89.98 
VGG16 87.95 84.62 89.19 88.07 
Resnet50 83.13 79.49 83.78 83.20  

Table 3 
Results of multi-model EL for four binary classifications.  

Tasks Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

AUC 
(%) 

AD versus CN 90.36 93.94 83.78 89.72 
AD versus MCI 77.19 68.97 54.06 71.18 
MCI versus CN 72.36 74.71 84.42 68.29 
MCIc versus 

MCInc 
63.49 57.56 64.29 62.50  

Table 4 
Single slice classifier performance for AD versus CN classification.  

Classifiers Mean Accuracy(%) Maximum Accuracy(%) 

Discriminator 84.23 ± 2.05 86.75 
VGG16 83.57 ± 2.65 86.75 
ResNet50 74.70 ± 6.12 83.13  

Table 5 
Classification performance of three classifiers.  

Classifiers Accuracy (%) 

AD versus 
CN 

AD versus 
MCI 

MCI versus 
CN 

MCIc versus 
MCInc 

Discriminator 90.36 74.56 69.11 66.67 
VGG16 87.95 77.19 69.92 60.31 
ResNet50 83.13 74.56 65.85 61.90  

Table 6 
Classification performance of four models.  

Model Multi-slice 
EL 

Multi- 
modal EL 

AD/CN 
(%) 

AD/MCI 
(%) 

MCI/CN 
(%) 

Baseline 
Model   

84.6 68.4 66.7 

Model 1  ✓ 85.6 71.2 65.9 
Model 2 ✓  90.4 74.6 69.1 
Proposed 

Model 
✓ ✓ 90.4 77.2′ 72.4  
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observed. The shorter the time between baseline and conversion, the 
more obvious the pathological changes between MCIc and MCInc, but 
some cases diagnosed as MCInc might still convert to AD several months 
later [33]. The longer the time, the harder it is to separate MCIc from 
MCInc, but the higher the clinical value [22]. This study only used 
baseline images from the ADNI-1 cohort, and most of these MCIc sub-
jects (100 of 138 subjects) converted to AD within 18 months. In future, 
longitudinal MCI images should be integrated into the dataset, and the 
time it takes for MCI to convert to AD should be studied. 

Recently, many researchers have devoted their efforts to dis-
tinguishing AD from CN using CNNs. For comparison, Table 8 summa-
rizes the classification performances achieved by several state-of-the-art 
studies. All 2D slice-level algorithms in Table 8 had very similar accu-
racies in AD versus CN classification, and the approach proposed in this 
research is ranked as the third best classifier. One reason for this ranking 
may be that this proposed method fully utilized the multi-layer and 
multi-model EL to make these AD versus CN classifications. For the three 
other tasks, the proposed approach was, for several reasons, not that 
outstanding at first glance. In Aderghal’s [16] work, high performance 
was achieved by using multimodality imaging (sMRI and diffusion 
tensor imaging). If solely sMRI had been applied, the mean accuracy of 
the validation and testing sets for AD versus CN, AD versus MCI, and MCI 
versus CN would have been 88.1%, 76.5%, and 71.3%, respectively. 
Ahmed’s [34] work has shown superior performance compared with 
other methods. However, it used longitudinal ADNI data, and 351 scans 
were acquired from 60 subjects. This method presents a data leakage 
problem. The images from each subject would appear in both the 
training and test sets, and the classifier would use additional, nones-
sential information for classification. A 3D CNN can extract 3D spatial 
information, which normally offers good performance, especially in 
MCI-related tasks. However, it includes more parameters and requires a 
large number of images for training [20]. The performance of 3D CNNs 
will be significantly degraded by limited data [15,35]. Overall, the 
model proposed in this research has performed comparably in the 2D 
models presented in previous AD studies. 

The subject number denotes the total subject numbers used in 
training, validation and testing, including AD, MCI and CN. For MCIc 
versus MCInc classification, discriminator is used. 

In general, Table 5 shows that the proposed DCGAN-based model is 
more advantageous for predicting MCI to AD conversions than classic 

CNNs. For CNNs, the first several convolutional blocks are locked. 
Considering the disparity between natural images and GMDM, low-level 
features learned by classic CNNs may be ineffective for classifying MCIc 
versus MCInc. DCGAN was originally trained with GMDM images, and 
the task adaptation transfer for weak supervision tasks was more 
effective. In the future, multiple discriminators can be integrated into 
the DCGAN to construct a multi-discriminator DCGAN. This design 
would guarantee the stability of the training process, and the patterns 
that are misclassified by different discriminators would change. 
Replacing CNNs with such discriminators would enhance the final 
classification performance. 

5. Conclusion 

This paper has proposed a multi-model, multi-slice EL framework 
based on 2D CNNs and intended to improve AD diagnostic performance. 
The proposed EL framework includes two stages. In the first stage, a 
majority voting ensemble is used to combine multi-slice predictions with 
complementary results. During the second stage, VGG16, ResNet50, and 
the DCGAN discriminator are used to construct an ensemble classifier to 
improve the robustness of AD versus CN classification. Transfer learning 
is a possible solution for handling biomedical classification problems 
with a small dataset. Two transfer strategies have been implemented: 
domain transfer (i.e., fine-tuning pretrained classic CNNs with GMDM 
images) and task adaptation transfer (i.e., using an AD versus CN clas-
sifier as a baseline model for an MCI versus CN task). The experimental 
results have shown that the EL framework achieved good classification 
results in most tasks, as compared with a single classifier. Comparing the 
proposed approach with other benchmark approaches indicates that the 
former performs comparably to existing state-of-the-art approaches, 
proving its effectiveness. Considering the lack of pretrained 3D CNNs, 
the proposed 2D approach is cost-effective and well suited for AD studies 
with small sample sizes. Future perspectives for this research include 
studying optimized slice selection strategies for each classifier, incre-
mental ensemble size, time of MCI to AD conversion, and the replace-
ment of CNNs with different DCGAN discriminators. 
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Table 7 
True positive rate of MCI convertors in different conversion time.  

Model 6 months (n = 9) 12–18 months (n = 13) 24 months (n = 5) 

EL 67% 31% 20% 
Discriminator 67% 62% 40% 
VGG16 67% 46% 40% 
ResNet50 56% 23% 60%  

Table 8 
Comparison of classification performance of state-of-art studies based on baseline sMRI data of ADNI-1.  

Study CNN Model Subject Numbers Accuracy 

AD versus CN (%) AD versus MCI (%) MCI versus CN (%) MCIc versus MCInc (%) 

Aderghal et al. 
2020 [16] 

2D slice-level 1551 92.5 85.0 80.0  

Lin et al. 
2018 [12] 

2D slice-level 725 88.8   73.0 

Pan et al. 
2020 [27] 

2D slice-level 787 84  79 62 

Ahmed et al. 
2020 [34] 

2D slice-level 351 93.6 85.5 81.7  

Lian et al. 
2020 [18] 

3D patch-level 1447 90.3   80.9 

Liu et al. 
2018 [36] 

3D patch-level 1526 91.1   76.9 

Our approach 2D slice-level 798 90.4 77.2 72.4 66.7  
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